Data Science as a Flashlight How Predictive Models Can Guide the Way to Student Success

Brad Weiner, PhD

University of Colorado Boulder

2021-05-26

2/24

About Me

Director of Data Science, University of Colorado Boulder

 $oldsymbol{1}$ 19 years experience in higher education

14 years on campus (Kansas, Vanderbilt, Minnesota, Colorado)

5 years in Ed-Tech/Consultancy

11 years Higher Ed Analytics/Data Science

Contact

🔽 brad.weiner@colorado.edu

У brad_weiner

🖵 bradweiner.info

What is a predictive model?

with the the party with a

4 / 24

It's an equation

Built on historical data (Beware!)

Estimates the likelihood of a future outcome

Why Use Predictive models in higher education?

Colleges and universities are in the public trust

We don't (currently) have the capacity to provide customized interventions for each individual student

Our research, teaching, and public engagement missions depend on us to fairly and efficiently allocate resources

If we don't use data or existing research, we're guessing

If we're guessing, we're biased toward the *status* quo

How do we use predictive models effectively and fairly?

9/24

Understand the use case. Are you predicting success or failure?
Assess risk. Don't deploy if the model could deny opportunities
Specify the model transparently and test for accuracy
Train users on intended uses. Avoid "off-label" efforts
Align incentives and organizational structures with the outcome
Learn to point the outcome toward populations of interest. If we want to enroll and retain more BIPOC Engineers, then use the model as a flashlight for those

students

Let's Predict Retention

Reminder: This is an example. Be Careful.

11 / 24

Explore the Data (this is not real student data)

student_id	1	2	3	4	5	6
retained	0	1	1	1	0	0
income_group	Pell Eligible	No Aid	Pell Eligible	No Aid	Pell Eligible	Pell Eligible
sex	male	female	female	female	male	male
age	22	38	26	35	35	NA
siblings_enrolled	1	1	0	1	0	0
peers_from_hs	0	0	0	0	0	0
net_tuition	283	2783	309	2073	314	330
residency	Resident	Non-Resident	Resident	Resident	Resident	International
total_peer_group	1	1	0	1	0	0

Pre-Process the Data

student_id	1	2	3	4	5	6
retained	0	1	1	1	0	0
income_group	Pell Eligible	No Aid	Pell Eligible	No Aid	Pell Eligible	Pell Eligible
sex	male	female	female	female	male	male
age	-0.5300051	0.5714304	-0.2546462	0.3649113	0.3649113	NA
siblings_enrolled	0.4325504	0.4325504	-0.4742788	0.4325504	-0.4742788	-0.4742788
peers_from_hs	-0.4734077	-0.4734077	-0.4734077	-0.4734077	-0.4734077	-0.4734077
net_tuition	-0.5021568	0.7865640	-0.4887541	0.4205673	-0.4861766	-0.4779288
residency	Resident	Non-Resident	Resident	Resident	Resident	International
total_peer_group	1	1	0	1	0	0
income_group_no_aid	0	1	0	1	0	0
income_group_pell_eligible	1	0	1	0	1	1
income_group_state_grant_eligible	0	0	0	0	0	0
sex_female	0	1	1	1	0	0
sex_male	1	0	0	0	1	1
residency_international	0	0	0	0	0	1
residency_non_resident	0	1	0	0	0	0
residency_resident	1	0	1	1	1	0
residency_na	0	0	0	0	0	0

Split Into Training/Test Sets

retn_train\$retained	n	percent
0	412	0.6158445
1	257	0.3841555
retn_test\$retained	n	percent
retn_test\$retained	n 137	percent 0.6171171

Build Basic Regression Model

(reminder, I only have 8 minutes)

<pre>mod.1 <- glm(retained ~</pre>	
total_peer_group +	
net_tuition +	
sex_female +	
income_group_no_aid,	
data = retn_train,	
<pre>family = "binomial")</pre>	

Review and Interpret the Results

term	estimate	std.error	statistic	p.value
(Intercept)	0.190	0.179	-9.255	0.000
total_peer_group	0.786	0.074	-3.245	0.001
net_tuition	1.381	0.168	1.923	0.054
sex_female	17.582	0.225	12.744	0.000
income_group_no_aid	2.992	0.297	3.691	0.000

Interpretation

Students in the Income No Aid Group are 2.992 times more likely to retain than those in the baseline group when controlling for other features

Female Students 17.5 times more likely to retain than those in the baseline group when controlling for other features

Make New Predictions

Allocate Scarce Resources With Interventions/Programming

THIS is where your model goes from an equation to an intervention

Option #1: All Students

Option #2: All Students

Option #3: All Engineers

Option #4: BIPOC Engineers

Which option will you choose?

Who "succeeds" in higher education is...

Structural

Cultural

As educators we should *appropriately* use data to allocate limited resources

That means we can...

Reproduce the Past

Thanks

Code and Slides available at bradweiner.info/talk